🎵 DeepMusic-OCR: How AI Learns to Read Sheet Music We adapted DeepSeek-OCR a model built for reading text and taught it to read the 2D language of music notation. Here’s what the paper is really about 👇 Thread 🧵
1/ Unlike normal text, music is two-dimensional: • Vertical = chords / simultaneity • Horizontal = rhythm / time Traditional OMR systems try to segment symbols. DeepMusic-OCR doesn’t. It reads the entire score at once.
2/ 🔍 The Encoder DeepMusic-OCR uses a vision encoder redesigned for music: • 8×8 fine-patch resolution for tiny details • 2D positional encoding aligned with staff lines • Dual attention: local (notes) + global (layout) • Pretrained on millions of synthetic sheets This lets the model capture both symbols and structure.
3/ 🎼 The Decoder Instead of outputting words, the decoder outputs musical events, like: <note:F#5-quarter> <clef:G> <key:D-major> It also handles: • Polyphony • Chords • Multiple voices …thanks to a Mixture-of-Experts architecture.
4/ 🧠 Musical Grammar Built In DeepMusic-OCR isn’t allowed to output impossible music. A “musical grammar loss” penalizes: • Broken measures • Impossible rhythms • Invalid symbols This gives the model a sense of musical correctness.
5/ 🖼️ Training Data Since real OMR data is limited, we generated millions of training examples from: • MusicXML • MuseScore • IMSLP Each score is rendered in multiple engraving styles, with distortions to simulate scanned pages. Synthetic data = the breakthrough.
6/ ⚡ Results With ~200 tokens per page, DeepMusic-OCR achieves: • High symbol accuracy • Consistent measures • Strong transfer to handwritten music And it does so at a fraction of the compute cost of traditional OMR systems.
7/ 🌍 Why This Matters DeepMusic-OCR enables: • Digitization of classical archives • Large-scale symbolic music analysis • Conditioning generative models with real scores • Education tools for musicians This isn’t just OCR it’s visual-symbolic music understanding.
1.370
5
Der Inhalt dieser Seite wird von Drittparteien bereitgestellt. Sofern nicht anders angegeben, ist OKX nicht der Autor der zitierten Artikel und erhebt keinen Anspruch auf das Urheberrecht an den Materialien. Die Inhalte dienen ausschließlich zu Informationszwecken und spiegeln nicht die Ansichten von OKX wider. Sie stellen keine Form der Empfehlung dar und sind weder als Anlageberatung noch als Aufforderung zum Kauf oder Verkauf digitaler Assets zu verstehen. Soweit generative KI zur Bereitstellung von Zusammenfassungen oder anderen Informationen eingesetzt wird, kann der dadurch erzeugte Inhalt ungenau oder widersprüchlich sein. Mehr Infos findest du im verlinkten Artikel. OKX haftet nicht für Inhalte, die auf Drittpartei-Websites gehostet werden. Digitale Assets, einschließlich Stablecoins und NFT, bergen ein hohes Risiko und können stark schwanken. Du solltest sorgfältig überlegen, ob der Handel mit oder das Halten von digitalen Assets angesichts deiner finanziellen Situation für dich geeignet ist.